7 research outputs found

    Chaos to Permanence-Through Control Theory

    Get PDF
    Work by Cushing et al. \cite{Cushing} and Kot et al. \cite{Kot} demonstrate that chaotic behavior does occur in biological systems. We demonstrate that chaotic behavior can enable the survival/thriving of the species involved in a system. We adopt the concepts of persistence/permanence as measures of survival/thriving of the species \cite{EVG}. We utilize present chaotic behavior and a control algorithm based on \cite{Vincent97,Vincent2001} to push a non-permanent system into permanence. The algorithm uses the chaotic orbits present in the system to obtain the desired state. We apply the algorithm to a Lotka-Volterra type two-prey, one-predator model from \cite{Harvesting}, a ratio-dependent one-prey, two-predator model from \cite{EVG} and a simple prey-specialist predator-generalist predator (for ex: plant-insect pest-spider) interaction model \cite{Upad} and demonstrate its effectiveness in taking advantage of chaotic behavior to achieve a desirable state for all species involved

    Determination of Chaos in Different Dynamical Systems

    Get PDF
    It has been widely observed that most deterministic dynamical systems go into chaos for some values of their parameters. There are many ways to measure chaos. One popular way uses Lyapunov exponents. The objective of this thesis is to find the parameter values for a system that determines chaos via the Lyapunov exponents.The paper by Wolf et.al., proposed the frequently used choice of calculating such exponents using Gram-Schmidt orthonormalization process. The work in this thesis centered on coding and verifying their algorithm , as well as using the code to investigate three biological models to find parameters/initial conditions to give chaos. Finally it also considers as future work choosing appropriate sampling algorithms to better understand the parameter space for which we may obtain chaos

    Chaos to Permanence - Through Control Theory

    Get PDF
    Work by Cushing et al. [18] and Kot et al. [60] demonstrate that chaotic behavior does occur in biological systems. We demonstrate that chaotic behavior can enable the survival/thriving of the species involved in a system. We adopt the concepts of persistence/permanence as measures of survival/thriving of the species [35]. We utilize present chaotic behavior and a control algorithm based on [66, 72] to push a non-permanent system into permanence. The algorithm uses the chaotic orbits present in the system to obtain the desired state. We apply the algorithm to a Lotka-Volterra type two-prey, one-predator model from [30], a ratio-dependent one-prey, two-predator model from [35] and a simple prey-specialist predator-generalist predator (for ex: plant-insect pest-spider) interaction model [67] and demonstrate its effectiveness in taking advantage of chaotic behavior to achieve a desirable state for all species involved

    The Access and Equity for Students with Disabilities (SWD) in STEM Higher Education

    Get PDF

    Assessment of diversity-based approaches used by American Universities to increase recruitment and retention of biomedical sciences research faculty members: A scoping review protocol

    No full text
    Diversity enriches the educational experience by improving intellectual engagement, self-motivation, citizenship, cultural engagement, and academic skills like critical thinking, problem-solving, and writing for students of all races. Faculty role models from similar backgrounds are essential for students from traditionally underrepresented groups as it sends a powerful message of support, belonging, and the confidence to pursue higher education. However, in the biomedical sciences, the percentage of historically underrepresented tenure-track faculty is far lower than that of their white colleagues. For this to change, a strong strategic plan and commitment from the university are imperative. This scoping review will assess the size and scope of available peer-reviewed research literature on diversity programs that aim to increase the recruitment and retention of biomedical sciences research faculty and are implemented and evaluated at American Universities. The information provided in this scoping review will help universities identify novel, successful diversity-based approaches for recruiting and retaining biomedical science faculty that might suit their own unique academic and geographic needs and be incorporated into their diversity initiatives and policies. The review follows the Population-Concept-Context methodology for Joanna Briggs Institution Scoping Reviews. Relevant peer-reviewed studies published in English between June 1, 2012, to June 1, 2022, will be identified from the following electronic databases; MEDLINE (PubMed), Scopus (Elsevier), EMBASE (Elsevier), CINAHL (EBSCO), and ERIC (EBSCO). The search strings using the key variables “biomedical research faculty,” “recruitment/retention,” “diversity/ minority/ underrepresented, and “mentoring” will be conducted using Boolean logic. Two independent reviewers will conduct all title and abstract screening, followed by a full article screening and data extraction. Due to the possible heterogeneity of the studies, we hope to use either a narrative analysis and/or descriptive figures/tables to depict the results

    Agent Based Models of Polymicrobial Biofilms and the Microbiome—A Review

    No full text
    The human microbiome has been a focus of intense study in recent years. Most of the living organisms comprising the microbiome exist in the form of biofilms on mucosal surfaces lining our digestive, respiratory, and genito-urinary tracts. While health-associated microbiota contribute to digestion, provide essential nutrients, and protect us from pathogens, disturbances due to illness or medical interventions contribute to infections, some that can be fatal. Myriad biological processes influence the make-up of the microbiota, for example: growth, division, death, and production of extracellular polymers (EPS), and metabolites. Inter-species interactions include competition, inhibition, and symbiosis. Computational models are becoming widely used to better understand these interactions. Agent-based modeling is a particularly useful computational approach to implement the various complex interactions in microbial communities when appropriately combined with an experimental approach. In these models, each cell is represented as an autonomous agent with its own set of rules, with different rules for each species. In this review, we will discuss innovations in agent-based modeling of biofilms and the microbiota in the past five years from the biological and mathematical perspectives and discuss how agent-based models can be further utilized to enhance our comprehension of the complex world of polymicrobial biofilms and the microbiome
    corecore